
ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 11, November 2014

Copyright to IJARCCE www.ijarcce.com 8464

Predict the number of remaining faults during

inspection using actual inspection data, where as

Stranded predict which files will contain the most

faults in the next release

K.Rama Krishna
1
, B.Kavitha Laxmi

2
, S.Prathibha Bharathi

3
, A.Radhika

4

Assistant Professor, Department of Computer Science Engineering and technology1,2,3,4

Abstract: The project consists of an efficient Currently Many researchers have addressed this important problem with

varying end goals and have proposed valuation techniques to compute the total number of faults. A group of

researchers focuses on finding error-prone modules base on the size of the module. Briand et al. Predict the number of

remaining faults during inspection using actual inspection data, where as Strand et al predict which files will contain

the most faults in the next release. Zhang and Mockus use data collected from previous projects to estimate the number

of faults in a new project. However, these data sets are not always available or, even if they are, may lead to inaccurate

estimates. For example, Zhang and Mockus use a naïve method base only on the size of the product to select similar

projects while ignoring many other critical factors such as project type, complexity, etc. Another alternative that

appears to produce very accurate estimates is base on the use of Bayesian Belief Networks (BBNs) .However, these

techniques require the use of additional information, such as expert knowledge and empirical data, that are not
necessarily collected by most software development companies. Software reliability growth models (SRGMs) are also

used to estimate the total number of faults to measure software reliability. Although they can be used to indicate the

status of the testing process, some have slow convergence while others have limited application as they may require

more input data or initial values that are selected by experts.

keywords: network of nodes, Data Sanitization, Denial of Service, Bayesian Belief Networks, data computation, Error

Valuation, test fault data, Software metrics, empirical data.

I.INTRODUCTION

Software metrics are crucial for characterizing the

development status of a software product. Well-defined

metrics can help to address many issues, such as cost,
resource planning (people, equipment such as test beds,

etc.), and product release schedules. Metrics have been

proposed for many phases of the software development

lifecycle, including requirements, design, and testing. In

this paper, the focus is on characterizing the status of the

software testing effort using a single key metric: the

estimated number of faults in a software product. The

availability of this estimate allows a test manager to

improve his planning, monitoring, and controlling

activities; this provides a more efficient testing process.

Also, since, in many companies, system testing is one of
the last phases (if not the last), the time to release can be

better assessed; the estimated remaining faults can be used

to predict the required level of customer support. Ideally, a

fault valuation technique has several important

characteristics. First, the technique should be accurate as

decisions base on inaccurate estimates can be time

consuming and costly to correct. However, most

estimators can achieve high accuracy as more and more

data becomes available and the process nears completion.

By that time, the estimates are of little, if any, use.

Therefore, a second important characteristic is that

accurate estimates need to be available as early as possible
during the system testing phase. The faster the estimate

converges to the actual value (i.e., the lower its latency),

the more valuable the result is to a test manager. Third, the

technique should be generally applicable in different
software testing processes and on different kinds of

software products. The inputs to the process should be

commonly available and should not require extensive

expertise in an underlying formalism. In this case, the

same technique can be widely reused, both within and

among software development companies, reducing

training costs, the need for additional tool support, etc.

Many researchers have addressed this important problem

with varying end goals and have proposed valuation

techniques to compute the total number of faults.

 A group of researchers focuses on finding error-prone

modules base on the size of the module. Briand et al.

predict the number of remaining faults during inspection

using actual inspection data, whereas Ostrand predict

which files will contain the most faults in the next release.

Zhang and Mockus use data collected from previous

projects to estimate the number of faults in a new project.

However, these data sets are not always available or, even

if they are, may lead to inaccurate estimates. For example,

Zhang and Mockus use a naïve method base only on the

size of the product to select similar projects while ignoring

many other critical factors such as project type,
complexity, etc. Another alternative that appears to

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 11, November 2014

Copyright to IJARCCE www.ijarcce.com 8465

produce very accurate estimates is base on the use of

Bayesian Belief Networks (BBNs) .

Valuation of Faults base on Fault Decay Model (ED3M),

is a novel approach proposed here which has been

rigorously validated using case studies, simulated data

sets, and data sets from the literature. Base on this

validation work, the ED3M approach has been shown to

produce accurate final estimates with a convergence rate

that meets or improves upon closely related, well-known
techniques. The only input is the fault data; the ED3M

approach is fully automated .

 Although the ED3M approach has yielded

promising results, there are fault prediction issues that are

not addressed by it. For example, system test managers

would benefit from obtaining a prediction of the faults to

be found in ST well before the testing begins, ideally in

the requirements or design phase. This could be used to

improve the plan for developing the test cases. The ED3M

approach, which requires test fault data as the input,

cannot be used for this. Alternate approaches which rely
on different input data (e.g., historical project data and

expert knowledge) could be selected to accomplish this.

However, in general, these data are not available at most

companies.

A second issue is that test managers may prefer to obtain

the predictions for the number of faults on a feature-by-

feature basis, rather than for the whole system. Although

the ED3M approach could be used for this, the number of

sample points for each feature may be too small to allow

for accurate predictions. As before, additional information

could be used to achieve such valuations, but this is

beyond the scope of this paper. Third, the performance of
the ED3M approach is affected when the data diverge

from the underlying assumption of an exponential decay

behavior.

II.SYSTEM OVERVIEW

EXISTING SYSTEM:

Several researchers have investigated the behavior of fault

density base on module size. One group of researchers has

found that larger modules have lower fault density. Two of

the reasons provided for their findings are the smaller

number of links between modules and that larger modules
are developed with more care. The second group has

suggested that there is an optimal module size for which

the fault density is minimal. Their results have shown that

fault density depicts a U-shaped behavior against module

size. Still others have reported that smaller modules enjoy

lower fault density, exploiting the famous divide and

conquer rule. Another line of studies has been base on the

HAIDER ET AL.: VALUATION OF FAULTS BASE ON

FAULT DECLINE MODEL . Convergence statistics,

collected from the simulation of 100 data sets generated

from the Triple-Linear behavior, of the estimator with

(A)10 percent tolerance, (b)20 percent tolerance, and (c)
30 percent tolerance. Convergence statistics, collected

from the simulation of 100 data sets generated from the

Multi exponential behavior, of the estimator with: 10

percent tolerance, (b) 20 percent tolerance, and (c) 30

percent tolerance. use of design metrics to predict fault-

prone modules. Briand et al. have studied the degree of

accuracy of capture-recapture models, proposed by

biologists, to predict the number of remaining faults

during inspection using actual inspection data. They have

also studied the impact of the number of inspectors and the

total number of faults on the accuracy of the estimators

base on relevant capture models. Ostrand et al. Bell et al.

have developed a model to predict which files will contain

the most faults in the next release base on the structure of
each file, as well as fault and modification history from the

previous release.

PROPOSED SYSTEM:

Many researchers have addressed this important problem

with varying end goals and have proposed valuation

techniques to compute the total number of faults. A group

of researchers focuses on finding error-prone modules

base on the size of the module. Briand et al. Predict the

number of remaining faults during inspection using actual

inspection data, whereas Ostrand et al predict which files
will contain the most faults in the next release. Zhang and

Mockus use data collected from previous projects to

estimate the number of faults in a new project. However,

these data sets are not always available or, even if they are,

may lead to inaccurate estimates. For example, Zhang and

Mockus use a naïve method base only on the size of the

product to select similar projects while ignoring many

other critical factors such as project type, complexity, etc.

Another alternative that appears to produce very accurate

estimates is base on the use of Bayesian Belief Networks

(BBNs) .However, these techniques require the use of

additional information, such as expert knowledge and
empirical data, that are not necessarily collected by most

software development companies. Software reliability

growth models (SRGMs) are also used to estimate the total

number of faults to measure software reliability. Although

they can be used to indicate the status of the testing

process, some have slow convergence while others have

limited application as they may require more input data or

initial values that are selected by experts.

III.THE WORKING PRINCIPLE

SOFTWAREREQUIREMENTS SPECIFICATION:

3.1. Scope:

The goal of the project is estimate the faults in a software

product. The availability of this estimate allows a test

manager to improve his planning, monitoring, and

controlling activities; this provides a more efficient testing

process. Estimators can achieve high accuracy as more and
more data becomes available and the process nears

completion.

3.2 Project Features:

This project is used to remove the faults from the c#

programs by checking the programs for compiler errors,

manual errors, faults and other bugs.

3.3 User characteristics:

This project is mainly designed for the software testing

personnel and mainly professional in CSharp

programming.

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 11, November 2014

Copyright to IJARCCE www.ijarcce.com 8466

3.4 Constraints:

The main constraint of the project is that the project can be

used to find the faults only on the c# programs.

3.5 Dependencies:

The project is mainly dependent on CLR – Common

Language Runtime libraries.

3.6.The Overall Description:

An accurate prediction of the number of faults in a

software product during system testing contributes not
only to the management of the system testing process but

also to the valuation of the product’s required

maintenance. Here, a new approach, called Valuation of

Faults base on Fault Decay Model (ED3M) is presented

that computes an estimate of the total number of faults in

an ongoing testing process. ED3M is base on valuation

theory. Unlike many existing approaches, the technique

presented here does not depend on historical data from

previous projects or any assumptions about the

requirements and/or testers’ productivity. It is a

completely automated approach that relies only on the data
collected during an ongoing testing process.

This is a key advantage of the ED3M approach as it makes

it widely applicable in different testing environments.

Here, the ED3M approach has been evaluated using five

data sets from large industrial projects and two data sets

from the literature. In addition, a performance analysis has

been conducted using simulated data sets to explore its

behavior using different models for the input data. The

results are very promising; they indicate the ED3M

approach provides accurate estimates with as fast or better

convergence time in comparison to well-known alternative

techniques, while only using fault data as the input.
Software metrics are crucial for characterizing the

development status of a software product. Well-defined

metrics can help to address many issues, such as cost,

resource planning (people, equipment such as test beds,

etc.), and product release schedules. Metrics have been

proposed for many phases of the software development

lifecycle, including requirements, design, and testing. In

this paper, the focus is on characterizing the status of the

software testing effort using a single key metric: the

estimated number of faults in a software product. The

availability of this estimate allows a test manager to
improve his planning, monitoring, and controlling

activities; this provides a more efficient testing process.

Also, since, in many companies, system testing is one of

the last phases (if not the last), the time to release can be

better assessed; the estimated remaining faults can be used

to predict the required level of customer support. Ideally, a

fault valuation technique has several important

characteristics. First, the technique should be accurate as

decisions base on inaccurate estimates can be time

consuming and costly to correct. However, most

estimators can achieve high accuracy as more and more

data becomes available and the process nears completion.
By that time, the estimates are of little, if any, use.

Therefore, a second important characteristic is that

accurate estimates need to be available as early as possible

during the system testing phase. The faster the estimate

converges to the actual value (i.e., the lower its latency),

the more valuable the result is to a test manager. Third, the

technique should be generally applicable in different

software testing processes and on different kinds of

software products.

The inputs to the process should be commonly available

and should not require extensive expertise in an

underlying formalism. In this case, the same technique can

be widely reused, both within and among software

development companies, reducing training costs, the need
for additional tool support, etc. Many researchers have

addressed this important problem with varying end goals

and have proposed valuation techniques to compute the

total number of faults. A group of researchers focuses on

finding error-prone modules base on the size of the

module. Briand et al. predict the number of remaining

faults during inspection using actual inspection data,

whereas Ostrand . Predict which files will contain the most

faults in the next release. Zhang and Mockus use data

collected from previous projects to estimate the number of

faults in a new project. However, these data sets are not
always available or, even if they are, may lead to

inaccurate estimates. For example, Zhang and Mockus use

a naïve method base only on the size of the product to

select similar projects while ignoring many other critical

factors such as project type, complexity, etc. Another

alternative that appears to produce very accurate estimates

is base on the use of Bayesian Belief Networks (BBNs) .

Valuation of Faults base on Fault Decay Model (ED3M),

is a novel approach proposed here which has been

rigorously validated using case studies, simulated data

sets, and data sets from the literature. Base on this

validation work, the ED3M approach has been shown to
produce accurate final estimates with a convergence rate

that meets or improves upon closely related, well-known

techniques. The only input is the fault data; the ED3M

approach is fully automated.

Although the ED3M approach has yielded promising

results, there are fault prediction issues that are not

addressed by it. For example, system test managers would

benefit from obtaining a prediction of the faults to be

found in ST well before the testing begins, ideally in the

requirements or design phase. This could be used to

improve the plan for developing the test cases. The ED3M
approach, which requires test fault data as the input,

cannot be used for this. Alternate approaches which rely

on different input data (e.g., historical project data and

expert knowledge) could be selected to accomplish this.

However, in general, these data are not available at most

companies.

A second issue is that test managers may prefer to obtain

the predictions for the number of faults on a feature-by-

feature basis, rather than for the whole system. Although

the ED3M approach could be used for this, the number of

sample points for each feature may be too small

to allow for accurate predictions. As before, additional
information could be used to achieve such valuations, but

this is beyond the scope of this paper. Third, the

performance of the ED3M approach is affected when the

data diverge from the underlying assumption of an

exponential decay behavior.

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 11, November 2014

Copyright to IJARCCE www.ijarcce.com 8467

FEASIBILITY STUDY:

The feasibility of the project is analyzed in this phase and

business proposal is put forth with a very general plan for

the project and some cost estimates. During system

analysis the feasibility study of the proposed system is to

be carried out. This is to ensure that the proposed system

is not a burden to the company. For feasibility analysis,

some understanding of the major requirements for the

system is essential.

Three key considerations involved in the feasibility

analysis are

ECONOMICAL FEASIBILITY

TECHNICAL FEASIBILITY

SOCIAL FEASIBILITY

ECONOMICAL FEASIBILITY:

This study is carried out to check the economic impact that

the system will have on the organization. The amount of

fund that the company can pour into the research and

development of the system is limited. The expenditures

must be justified. Thus the developed system as well
within the budget and this was achieved because most of

the technologies used are freely available. Only the

customized products had to be purchased.

TECHNICAL FEASIBILITY:

This study is carried out to check the technical feasibility,

that is, the technical requirements of the system. Any

system developed must not have a high demand on the

available technical resources. This will lead to high

demands on the available technical resources. This will

lead to high demands being placed on the client. The

developed system must have a modest requirement, as

only minimal or null changes are required for
implementing this system.

SOCIAL FEASIBILITY:

The aspect of study is to check the level of acceptance of

the system by the user. This includes the process of

training the user to use the system efficiently. The user

must not feel threatened by the system, instead must

accept it as a necessity. The level of acceptance by the

users solely depends on the methods that are employed to

educate the user about the system and to make him

familiar with it. His level of confidence must be raised so

that he is also able to make some constructive criticism,
which is welcomed, as he is the final user of the system.

IV.IMPLEMENTATION OF SYSTEM
METHODOLOGY :

Definitions:

Error:A mistake made by a member of the software team.

Fault:

The section of code or documentation, which must be

changed in order to correct a fault.

Failure:

A situation in which the software fails to execute as

intended.
Problem Report:

Usually documentation that a failure has occurred during

testing or use.

May also be used to document faults found in inspections

and reviews.

Fault -“An instance in which a requirement is not

satisfied. Here it must be recognized that a requirement is

any agreed upon commitment. It is not only the

recognizable external product requirement, but can include

internal development requirements…”.

Software Faults:

Software Fault: Any flaw or imperfection in software

work product or software process.

Software work product is any artifact created a part of the

software process.

Modules:

1) Login

2) Browse

3) Error Valuation

4) Error Correction

5) Report.

Module Description:

1) Login:
The Valid user enter into login to send data to available

network systems, if the user doesn’t register it will move

to new user creation form. In this Module Collecting the

general user details and store database for future

references. It having Name, Password, Confirm Password,

and Email address.

2) Browse :

The user select the already created project given as input.

we have to select the (.exe) file of the project from debug

folder. using (.exe) file we retrieve a class name, method

name, Parameter name and namespace. we going to apply
a refactor and merging techniques in selected class name.

3) Error Valuation :

In this module we computes an estimate of the faults in an

ongoing testing process. This could be used to improve the

plan for developing the test cases.

System testing is one of the last phases (if not the last), the

time to release can be better assessed; the estimated

remaining faults can be used to predict the required level

of customer support.

4) Error Correction :

Error correction techniques are used to improve the

estimates and, consequently, reduce the convergence time.
After error has been estimated we going to correct the

error in specified line number and files.

It is used to correct the current estimate; the corrected

value is the Output.

5) Report :

In this module process report has been generated for

specified users. In report form specified error corrected

filename, username ,date and status of the project display

in report form. The information stored in admin database.

Software process is a set of activities, methods, practices

and transformations that people use to develop and
maintain software work products.

V.EXPERIMENTAL RESULTS

DESIGN

The Unified Modeling Language allows the software

engineer to express an analysis model using the modeling

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 11, November 2014

Copyright to IJARCCE www.ijarcce.com 8468

notation that is governed by a set of syntactic semantic and

pragmatic rules.

A UML system is represented using five different views

that describe the system from distinctly different

perspective. Each view is defined by a set of diagram,

which is as follows.

User Model View

This view represents the system from the users

perspective.
The analysis representation describes a usage scenario

from the end-users perspective.

Structural model view

This model view models the static structures.

 Behavioral Model View

It represents the dynamic of behavioral as parts of the

system, depicting the interactions of collection between

various structural elements described in the user model

and structural model view.

 Implementation Model View

In this the structural and behavioral as parts of the system
are represented as they are to be built.

 Environmental Model View

In this the structural and behavioral aspects of the

environment in which the system is to be implemented are

represented.

Class Diagram:

VI. IMPLEMENTATION

Implementation is the stage of the project when the

theoretical design is turned out into a working system.

Thus it can be considered to be the most critical stage in

achieving a successful new system and in giving the user,

confidence that the new system will work and be effective.

The implementation stage involves careful planning,

investigation of the existing system and it’s constraints on

implementation, designing of methods to achieve

changeover and evaluation of changeover methods.

Implementation is the process of converting a new system

design into operation. It is the phase that focuses on user

training, site preparation and file conversion for installing

a candidate system. The important factor that should be

considered here is that the conversion should not disrupt

the functioning of the organization.

6.1 Coding login :
using System;

using System.Collections.Generic;
using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

using System.IO;

using System.Data.SqlClient;

namespace CodeTreeView

{

public partial class regform : Form

{

SqlConnection con;

SqlCommand cmd;
SqlCommand cmd1;

SqlDataReader dr;

public regform()

{

InitializeComponent();

}

private void button1_Click(object sender, EventArgs e)

{

con = new

SqlConnection("server=.;database=valuation;user

id=sa;password=");
con.Open();

cmd =new SqlCommand ("select * from login where

username='"+username .Text +"' AND

password='"+password .Text +"'",con);

cmd1 = new SqlCommand("select * from rreport", con);

cmd1.CommandText = "insert into

rreport(userreport)values(@userreport)";

cmd1.Parameters.Add("@userreport",

SqlDbType.VarChar, 20).Value = username.Text;

cmd1.ExecuteNonQuery();

dr = cmd.ExecuteReader();

if (dr.Read())
{

browse bbb = new browse();

bbb.Show();

}

else

{

label4.Text = "please enter a correct username and

password";

}

}

private void linkLabel1_LinkClicked(object sender,
LinkLabelLinkClickedEventArgs e)

{

registration rrr = new registration();

rrr.Show();

}

private void button2_Click(object sender, EventArgs e)

{

Application.Exit();

}

}

}

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 11, November 2014

Copyright to IJARCCE www.ijarcce.com 8469

VII. Screen shots

Screenshot Login:

Screenshot New Registration

Screenshot browse:

Screenshot Error Report:

VIII. Conclusion

This project provides efficiency in testing the software
product in an accurate manner. By working on this paper

we can find many testing products and also prediction of

faults in a software product. By working on this project I

have implemented software which can find errors, faults,

and bugs.The software has been developed in such a way

that it will find the error that are in the C Sharp files and

will able to correct them from the software only.The

software also generates the error report of how many

errors are occurring in the programming. Thus we can also

analyze the throughput of the programmers. This is

designed to find the compiler errors.The efficiency of the

software is also high, as it is finding all the compiler errors
and faults and other things. There is cent percent

efficiency achieved.Since the software is providing the

exact results, we can correctly estimate the faults using the

above model.

IX.FUTURE ENHANCEMENT

Project is to be enhanced to test types of programming

files.Project is used to test for even the exe files.Multi file

and linked file support is to be implemented.Analysis of

the error files for future comparison.Multi platform

compatibility.Program adapting to recurring
errors.Automated error correction technique.The

compatibility for other programming languages source

files is to be implemented.

REFERENCES
[1] Microsoft Visual Basic.NET Programmer’s CookBook:-

MATTHEW MACDONALD (Tata McGrawHill Edition)

[2]. Grey Buczek, .NET developers guide 2002, Prentice-Hall India.

[3] .Benolt Marchal, VB.NET by example 2003 – TataMcGraw- Hill.

System Analysis & Design – Alenis Leon.

[4]. Integral approach to software engineering – Pankaj Jalole.

[5] N.E. Fenton and M. Neil, “A Critique of Software Fault Prediction

Models,” IEEE Trans. Software Eng., vol. 25, no. 5,pp. 675-689,

Sept.-Oct. 1999.

[6] Mays, R., et al., Experiences with Fault Prevention, IBM Systems

Journal, January 1990.

[7] P. Zhang, A. Mockus, and D. Weiss, “Understanding and Predicting

Effort in Software Projects,” Proc. 25th Int’l Conf.Software Eng.,

pp. 274-284, 200

[8] J.W. Cangussu, R.M. Karcich, R.A. DeCarlo, and A.P. Mathur,

“Software Release Control Using Fault Base Quality

Valuation,”Proc. 15th Int’l Symp. Software Reliability Eng., Nov.

2004.

[9] C. Bai, K.-Y. Cai, and T.Y. Chen, “An Efficient Fault Valuation

Method for Software Fault Curves,” Proc. 27th Ann. Int’l Computer

Software and Applications Conf., Nov. 2003.

[10] I. Burnstein, A. Homyen, T. Suwanassart, G. Saxena, and R. Grom,

“A Testing Maturity Model for Software Test Process Assessment

and Improvement,” Software Quality Professional, vol. 1, Sept.

1999.

BIOGRAPHIES

Mr.K.Ramakrisha, presently working as

an assistant professor in computer science

engineering and technology department,

samara university, samara ,Ethiopia .He
received the master of technology degree

in VNR Vignana Jyothi Institute of

Engineering and Technology- Jawaharlal

Nehru Technological University

Hyderabad, India in 2010. He received the

bachelor of technology degree in The Vazir Sultan College

of Engineering And technology, kakatiya university

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 11, November 2014

Copyright to IJARCCE www.ijarcce.com 8470

,Warangal, India. He Has 6+ Years Teaching Experience,

His Research Interests Include mobile ad-hoc networks ,

Data Mining, Information Security, Software Testing,

mobile communication and cloud computing.

B.Kavitha Laxmi, she is currently

working as an Assistant Professor,

Department of Computer Science

&Engineering in HITAM, Hyderabad,
R.R.Dist, Telangana, India. she

received the master of technology

degree in VNR Vignana Jyothi Institute

of Engineering and Technology-

Jawaharlal Nehru Technological University Hyderabad,

India in 2010. She Has 5+ Years Teaching Experience.

Research Interests Include mobile ad-hoc networks , Data

Mining ,Web Technologies Cloud Computing and data

warehouse.

 S. Prathibha Bharathi,
Graduated computer science and

Engineering From Jawaharlal Nehru

technological University, Hyderabad,

Andhra Pradesh, India , And M.Tech In

Software Engineering,VNR Vignana

Jyothi Institute of Engineering and

Technology- --Jawaharalal Nehru technological University

Hyderabad ,A.P,India In 2010.She Is Working Presently

As Assistant Professor MLRIT , Hyderabad, She Has 7

Years Experience. Research Interests Wireless sensor

networks, network security, data mining, image

processing.

A.Radhika, Graduated Information

Technology and Engineering, Andhra

Pradesh, India. And M.Tech In

Computer Science &Engineering-

Jawaharalal Nehru Technological

University Hyderabad , A.P,India She

Is Working Presently As Assistant

Professor-HITAM , Hyderabad, She

Has 7 Years Experience. Research

Interests Network Security ,Computer Organization ,Data

warehousing.

	TECHNICAL FEASIBILITY:

